The applications of ultrasonic welding are extensive and are found in many industries including electrical and computer, automotive and aerospace, medical, and packaging. Whether two items can be ultrasonically welded is determined by their thickness. If they are too thick this process will not join them. This is the main obstacle in the welding of metals. However, wires, microcircuit connections, sheet metal, foils, ribbons and meshes are often joined using ultrasonic welding. Ultrasonic welding is a very popular technique for bonding thermoplastics. It is fast and easily automated with weld times often below one second and there is no ventilation system required to remove heat or exhaust. This type of welding is often used to build assemblies that are too small, too complex, or too delicate for more common welding techniques.
[edit] Computer and electrical industries
In the electrical and computer industry ultrasonic welding is often used to join wired connections and to create connections in small, delicate circuits. Junctions of wire harnesses are often joined using ultrasonic welding.[4] Wire harnesses are large groupings of wires used to distribute electrical signals and power. Electric motors, field coils, transformers and capacitors may also be assembled with ultrasonic welding.[5] It is also often preferred in the assembly of storage media such as flash drives and computer disks because of the high volumes required. Ultrasonic welding of computer disks has been found to have cycle times of less than 300 ms.[6]
One of the areas in which ultrasonic welding is most used and where new research and experimentation is centered is microcircuits.[4] This process is ideal for microcircuits since it creates reliable bonds without introducing impurities or thermal distortion into components. Semiconductor devices, transistors and diodes are often connected by thin aluminum and gold wires using ultrasonic welding.[7] It is also used for bonding wiring and ribbons as well as entire chips to microcircuits. An example of where microcircuits are used is in medical sensors used to monitor the human heart in bypass patients.
One difference between ultrasonic welding and traditional welding is the ability of ultrasonic welding to join dissimilar materials. The assembly of battery components is a good example of where this ability is utilized. When creating battery and fuel cell components, thin gauge copper, nickel and aluminum connections, foil layers and metal meshes are often ultrasonically welded together.[4] Multiple layers of foil or mesh can often be applied in a single weld eliminating steps and cost.
[edit] Aerospace and automotive industries
For automobiles, ultrasonic welding tends to be utilized in the assembly of large plastic components and electrical components such as instrument panels, door panels, lamps, air ducts, steering wheels, upholstery and engine components.[8] As plastics have continued to replace other materials in the design and manufacture of automobiles, the assembly and joining of plastic components has increasingly become a critical issue. Some of the advantages for ultrasonic welding are low cycle times, automation, low capital costs, and flexibility.[9] Also, ultrasonic welding does not damage surface finish, which is a crucial consideration for many car manufacturers, because the high-frequency vibrations prevent marks from being generated.[8]
Ultrasonic welding is generally utilized in the aerospace industry when joining thin sheet gauge metals and other lightweight materials. Aluminum is a difficult metal to weld using traditional techniques because of its high thermal conductivity. However, it is one of the easier materials to weld using ultrasonic welding because it is a softer alloy metal and thus a solid-state weld is simple to achieve.[10] Since aluminum is so widely used in the aerospace industry, it follows that ultrasonic welding is an important manufacturing process. Also, with the advent of new composite materials, ultrasonic welding is becoming even more prevalent. It has been used in the bonding of the popular composite material carbon fiber. Numerous studies have been done to find the optimum parameters that will produce quality welds for this material
[edit] Computer and electrical industries
In the electrical and computer industry ultrasonic welding is often used to join wired connections and to create connections in small, delicate circuits. Junctions of wire harnesses are often joined using ultrasonic welding.[4] Wire harnesses are large groupings of wires used to distribute electrical signals and power. Electric motors, field coils, transformers and capacitors may also be assembled with ultrasonic welding.[5] It is also often preferred in the assembly of storage media such as flash drives and computer disks because of the high volumes required. Ultrasonic welding of computer disks has been found to have cycle times of less than 300 ms.[6]
One of the areas in which ultrasonic welding is most used and where new research and experimentation is centered is microcircuits.[4] This process is ideal for microcircuits since it creates reliable bonds without introducing impurities or thermal distortion into components. Semiconductor devices, transistors and diodes are often connected by thin aluminum and gold wires using ultrasonic welding.[7] It is also used for bonding wiring and ribbons as well as entire chips to microcircuits. An example of where microcircuits are used is in medical sensors used to monitor the human heart in bypass patients.
One difference between ultrasonic welding and traditional welding is the ability of ultrasonic welding to join dissimilar materials. The assembly of battery components is a good example of where this ability is utilized. When creating battery and fuel cell components, thin gauge copper, nickel and aluminum connections, foil layers and metal meshes are often ultrasonically welded together.[4] Multiple layers of foil or mesh can often be applied in a single weld eliminating steps and cost.
[edit] Aerospace and automotive industries
For automobiles, ultrasonic welding tends to be utilized in the assembly of large plastic components and electrical components such as instrument panels, door panels, lamps, air ducts, steering wheels, upholstery and engine components.[8] As plastics have continued to replace other materials in the design and manufacture of automobiles, the assembly and joining of plastic components has increasingly become a critical issue. Some of the advantages for ultrasonic welding are low cycle times, automation, low capital costs, and flexibility.[9] Also, ultrasonic welding does not damage surface finish, which is a crucial consideration for many car manufacturers, because the high-frequency vibrations prevent marks from being generated.[8]
Ultrasonic welding is generally utilized in the aerospace industry when joining thin sheet gauge metals and other lightweight materials. Aluminum is a difficult metal to weld using traditional techniques because of its high thermal conductivity. However, it is one of the easier materials to weld using ultrasonic welding because it is a softer alloy metal and thus a solid-state weld is simple to achieve.[10] Since aluminum is so widely used in the aerospace industry, it follows that ultrasonic welding is an important manufacturing process. Also, with the advent of new composite materials, ultrasonic welding is becoming even more prevalent. It has been used in the bonding of the popular composite material carbon fiber. Numerous studies have been done to find the optimum parameters that will produce quality welds for this material
No comments:
Post a Comment